WCEAT THE WESTRA

LOYOLA COLLEGE (AUTONOMOUS) CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

UMT1MC01 - ALGEBRA

Date: 23-04-2025 Dept. No. Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

SECTION A - K1& K2 (CO1)			
Q.No	Levels	Answer ALL the Questions (10 x 2 = 20)	
1	K1	Transform the equation $2x^4 - 5x^2 + 3x - 4 = 0$ into one in which the leading coefficient be one.	
2		Find the quotient and remainder when $3x^3 + 8x^2 + 8x + 12 = 0$ is divided by $x - 4$.	
3		Find the sum of the cubes of the roots of the equation $x^5 - x^2 - x - 1 = 0$.	
4		State strum's theorem of unequal roots.	
5		Find the sum and product of the eigen values of $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.	
6		Find the eigen values of the $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$.	
7	K2	Compute $\varphi(18)$.	
8		State De Gua's rule.	
9		If $-1 < x < 1$, then $\log(1 + x) = \dots$	
10		Write the expansion of e^x and e^{-x} .	
SECTION B- K3& K4 (CO2)			
		Answer ALL the Questions $(4 \times 10 = 40)$	
11		Find the equation whose roots are the roots of $x^5 + 4x^3 - x^2 + 11 = 0$, each diminished by 3. [OR]	
12	K3	If α , β , γ are the roots of the equation $x^3 + \alpha x^2 + bx + c = 0$ form the equation whose roots are $\alpha\beta$, $\beta\gamma$, $\gamma\alpha$.	
13		Find the eigen values and eigen vectors of $A = \begin{pmatrix} 7 & 0 & -2 \\ 0 & 5 & -2 \\ -2 & -2 & 6 \end{pmatrix}$. [OR]	
14		Form the equation whose roots are $-\frac{3}{2}$, 3, $\frac{1}{7}$.	
15		State and Prove Lagrange's theorem.	
16	K4	Find the inverse of the matrix $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix}$.	
17		$\frac{4 - 3 8}{\text{If } p \text{ is a prime, then prove } (p - 1)! \equiv -1 \pmod{p}.}$	
18		[OR] Show that if $x > 0$, $\log x = \frac{x-1}{x+1} + \frac{1}{2} \frac{x^2-1}{(x+1)^2} + \frac{1}{3} \frac{x^3-1}{(x+1)^3} + \cdots$	

SECTION C – K5 & K6 (CO3)			
	Ansv	wer ALL the Questions $(2 \times 20 = 40)$	
19	K5	 a) Form the cubic equation two of whose roots are 3, 1 + √2. b) Increase the roots of the equation x⁴ + 12x³ + 56x² + 20x + 9 = 0 by 3 and hence solve the equation. 	
20		 [OR] a) If α, β, γ, δ be the roots of the equation x⁴ - 7x³ + 8x² - 5x + 10 = 0 find the value of (α² + 2)(β² + 2)(γ² + 2)(δ² + 2). b) Solve the equation x⁴ + 20x³ + 143x² + 430x + 462 = 0 by removing its second term. 	
21	K6	Diagonalize the matrix $\begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$.	
22		[OR] a) State and prove Fermat's theorem. b) Sum the series $1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \cdots$	

\$\$\$\$\$\$\$\$\$\$\$\$\$